Effect of a heteroatom on bonding patterns and triradical stabilization energies of 2,4,6-tridehydropyridine versus 1,3,5-tridehydrobenzene.

نویسندگان

  • Prashant U Manohar
  • Lucas Koziol
  • Anna I Krylov
چکیده

Electronic structure of 2,4,6-tridehydropyridine and isoelectronic 1,3,5-tridehydrobenzene is characterized by the equation-of-motion spin-flip coupled-cluster calculations with single and double substitutions and including perturbative triple corrections. Equilibrium geometries of the three lowest electronic states, vertical and adiabatic states ordering, and triradical stabilization energies are reported for both triradicals. In 1,3,5-tridehydrobenzene, the ground (2)A(1) state is 0.016 eV below the (2)B(2) state, whereas in 2,4,6-tridehydropyridine the heteroatom reverses adiabatic state ordering bringing (2)B(2) below (2)A(1) by 0.613 eV. The adiabatic doublet-quartet gap of 2,4,6-tridehydropyridine is smaller than that of 1,3,5-tridehydrobenzene by 0.08 eV; the respective values are 1.223 and 1.302 [corrected] eV. Moreover, the heteroatom reduces bonding interactions between the C(2) and C(6) radical centers, which results in the increased stabilizing interactions between C(4) and C(2)/C(6). Triradical stabilization energies corresponding to the separation of C(4) and C(2) are 19.7 and -0.2 kcal/mol, respectively, in contrast to 2.8 kcal/mol in 1,3,5-tridehydrobenzene. Similarly weak interactions between C(2) and C(6) are also observed in 2,6-didehydropyridine resulting in a nearly zero singlet-triplet energy gap, in contrast to m-benzyne and 2,4-didehydropyridine. The total interaction energy of the three radical centers is very similar in 1,3,5-tridehydrobenzene and 2,4,6-tridehydropyridine and is 19.5 and 20.1 kcal/mol, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic structure of the 1,3,5-tridehydrobenzene triradical in its ground and excited states

The ground and low-lying electronic states of the 1,3,5-tridehydrobenzene triradical are characterized by electronic structure calculations. It is found that the ground state is the A1 doublet of C2v symmetry. Another doublet state lies 0.1–0.2 eV higher in energy, and the lowest quartet state of D3h symmetry is 1.2–1.4 eV higher in energy. Both doublets are degenerate at D3h geometries and und...

متن کامل

The 1,2,3-tridehydrobenzene triradical: 2B or not 2B? The answer is 2A!

The molecular and electronic structure of 1,2,3-tridehydrobenzene was investigated by a variety of computational methods. The two lowest electronic states of the triradical are the (2)B(2) and (2)A(1) doublet states characterized by different interactions of the unpaired electrons. Vertically, the two states are well separated in energy-by 4.9 and 1.4 eV, respectively. However, due to different...

متن کامل

DFT Study of the Six-Membered Heterocyclic SinN6-nHn (n = 0-6): Stability and Aromaticity

One main group of organic chemistry is related to the aromatic compounds. In the present work, we replaced the CH group of benzene by silicon and nitrogen analogues. Then, Density functional theory (DFT) calculations were carried out for six-membered heterocyclic Si-N aromatic rings. Full geometry optimizations were performed in gas-phase, and at B3LYP level using 6-311++G(d,p) and CBSB7 basis ...

متن کامل

Effects of structure and number of Heteroatom on the π-π stacking interactions of benzene with N-substituted coronenes: A theoretical study

Stability of the π-π stacking interactions in the Ben||N-substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben is benzene and || denotes π-π stacking interaction, and N-substituted-coronene is coronene molecule which substituted with different number of N atoms). The results reveal simultaneous effects of structure and number of Heteroatom on th...

متن کامل

Synthesis of Pyranopyrazole Compounds Using Heterogeneous Base Catalyst Based on 1,3,5-Triazine-2,4,6-Triamine Modified Nano Rice Husk Silica

In the current study, amorphous silica nanoparticles were easily extracted from rice husk ash. The target composite was synthesized by the direct incorporation of chloropropyl groups through the condensation of nanosilica and 3-chloropropyl trimethoxysilane and then grafting of 1,3,5-triazine-2,4,6-triamine (Melamine) onto the propyl groups by the simple nucleophilic substitution reaction (RHA@...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 113 11  شماره 

صفحات  -

تاریخ انتشار 2009